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" Two main points of this presentation

* To propose a more suitable choice of norm than the
typical total energy-based norm.

* To suggest that an alternative simple methodology
can be used to assess the impact of observations
without need for the linear assumption and the

practical complexities it introduces: need of adjoint,
restricted applicability.



Setting up notation
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Three error measures considered here:
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True state-space error: Crle = (X£|€ — XZ) T, (XIJ;IK — Xk)
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Perceived state-space: €t
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Forecast model: X, ., .1 = M k1 (Xe— 1 k—met 1)

Suboptimal analysis update:
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OMB residual vector: dk—m+1\k—m = yz_mﬂ - hk:—m+1(Xk_m+1|k_m)

State-space forecast error reduction:  0€p = €1 — €plkm
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Observation-space forecast error reduction: 5%

Remarks:

» The sub-optimality of the analysis update accommodates the weakly non-linear case

»Here, we'll be talking about the 1-day forecast error and corresponding error reduction



State-space (Adjoint) Approach
Question 1: How does the forecast error change with a change of initial condition?

Answer to Q1: Treat change of initial condition as infinitesimal and derive approximate
formulae expressing the change in forecast error to various orders of
accuracy. For example, a first-order expression involves:
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Question 2: How does the forecast error change when the initial condition changes
as a consequence of assimilating observations?

Answer to Q2: Similarly to addressing Q1, treat change of initial condition as infinitesimal
and derive approximate formulae expressing the change in forecast error
to various orders of accuracy. For example, first and second order

approximations give:
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Limitations to the state-space (adjoint) approach

Practical definition of the forecast aspect requires verification
state typically introducing what might be potentially
undesirable correlations between residuals and forecasts

Linearization assumptions constraint the technique to have
limited applicability

As used in practice, it infers statistical properties, but lacks
suitable probabilistic framework



Observation-space Approach
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Calculating the error reduction requires no approximation: 5ek = €k|k—m+1 eklk—m

Following Errico (2007) or Daescu and Todling (2009) one could write down
approximations to the error reduction to various orders, but these are unnecessary.

Advantages of observation-space approach

* Verifying against observations avoids introduction of spurious effects in
the forecast aspect

* No linearization and adjoints are need and therefore method is applicable
to any length of forecast — no issues with multiple loops in the analysis
minimization scheme

* Based on estimation theory and probabilistic approach

* Essentially cost-free and simple to implement



Insights on State- vs Observation-space Approaches

For the sake of argument, consider the linear case.

Define the forecast error covariance difference: AP£ = P£|k_ +1 P£|k_m

< oep > = Tr{TkAPi} % N

t t —>
<bef > = Tr{H[CH,AP]]

Then:
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Remark: Probabilistic approach has very clear notion of improvement: APg <0

Useful definitions for what follows:

Observation-minus-forecast residual covariance matrix:

Fk|k—m — HkP£|]€_mHZ+Rk

Difference between a general, suboptimal gain, and the Kalman gain matrices:

AKk = Kk —Kk



Insights on State- vs Observation-space Approaches

One can derive the following basic results:

1. For optimal systems, the expected forecast error reduction always corresponds
to positive impact — assimilation of data always leads to improvement in the

expected mean sense.
opt

<oep,> < 0

opt
<de; > < 0

2. For optimal systems, and a suitable choice of weighting matrix T,, the state-space
expected forecast error reduction produces the same estimate as that obtained in
observation-space.

opt

< 5€k(Tk: = HZCka) > L < 56% >

Since rank(Tk) > T‘lef(ck) there is only so much the measure in
observation-space can capture when compared with that in state-space,
however, the remaining part is not accessible to us.



Insights on State- vs Observation-space Approaches

3. In general, for suboptimal systems, verifying against a state other than the truth
introduces a correlation (covariance) between the observatlon -minus-background
residual and the error in the verification, €, = X; — Xk

4. In general, for suboptimal systems, if the verification is chosen to be the underlying
analysis all intermediate residual correlations (covariances) participate
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5. Therefore, only in the optimal case, use of the verification is equivalent to use of
the unknown true state to obtain the expected error change of interest.




Experimental Setup

Test-bed: GEOS-5 DAS 2x2.5x72

Observation impact on all 24-hr forecasts from O0OUTC
for August 2007

Broad LPO, excluding only very top layers of model
What follows:
1. Quick test for the role of the verification

2. Compares the state-space (adjoint) approach for
three different norms

3. Compares results from observation-space
approach to what’s obtained in (2)



The Role of the Verification

The role of the verification can precisely tested in observation-space. Similarly, to the
result obtained in state-space, when the verification is chosen to be the analysis, now
projected onto observation space, the following holds:
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The result with GEOS-5 DAS indicates that in the light of this global measure, the
system is nearly optimal, and using the analysis as a proxy for the observations is
reasonable most of the time. Indeed, this provides a test of optimality.




When the state-space measure is designed to capture what the observation-space
measure captures it reveals the correlations between the observation errors and the
OMB-residuals.
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Observation Impacts and Choice of Norm
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Observation Impacts and Choice of Norm
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Y Observation Impacts and Choice of Norm
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Obs Impact for August 2007-00z
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Overall Fractional Impacts for various error measures
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Fractional Impacts for AMSU-A on NOAA-15 and 16
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Fractional Impacts for AIRS on AQUA
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Limitations of observation-space approach

* Observation-space measures only capture a part of the forecast error —
that part projecting on the space of observations — unfortunately, this is
only part accessible to us.

* In practice, since observations are bias-corrected, there is still a correlation
in the forecast aspect between the forecast and the verification (i.e., bias-
corrected observations in this case).

* The observing system is assumed to be relatively homogenous in time.

Conclusions

* A fair assessment of the observing system impact on the forecast requires
careful choice of a forecast error measure.

* Impacts derived from the sequence of observation-minus-forecast residuals
provide similar information to that obtained with adjoint-based techniques
with considerably less restrictions and complexity.

“I like the dreams of the future better than the history of the past.”
- Thomas Jefferson



